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A Scalable Approach to Predict Multi-Agent Motion
for Human-Robot Collaboration

Mohammad Samin Yasar and Tariq Iqbal

Abstract—Human motion prediction is considered a key com-
ponent for enabling fluent human-robot collaboration. The ability
to anticipate the motion and subsequent intent of the partner(s)
remains a challenging task due to the complex and interpersonal
nature of human behavior. In this work, we propose a novel se-
quence learning approach that learns a robust representation over
the observed human motion and can condition future predictions
over a subset of past sequences. Our approach works for both
single and multi-agent settings and relies on an interpretable latent
space that has the implicit benefit of improving human motion
understanding. We evaluated the proposed approach by comparing
its performance against state-of-the-art motion prediction methods
on single, multi-agent, and human-robot collaboration datasets.
The results suggest that our approach outperforms other methods
over all the evaluated temporal horizons, for single-agent and
multi-agent motion prediction. The improved performance of our
approach for both single and multi-agent settings, coupled with an
interpretable latent space, can enable close-proximity human-robot
collaboration.

Index Terms—Human detection and tracking, human-robot
collaboration, intention recognition.

I. INTRODUCTION

UNDERSTANDING human motion is a crucial skill for
robots to coexist and collaborate with humans [1]–[3].

Humans develop the ability to engage in joint action during
infancy and early childhood, through a combination of obser-
vation, active participation and explicit teaching [4], [5]. As
such, humans are innately adept at anticipating the motion and
intent of other persons over varying horizons [6], [7]. This is best
observed in team activities, where two or more individuals can
understand and predict each other’s motion [5], [8]. Along these
lines, for robots to fluently collaborate with humans, they need
to combine aspects of perception, representation, and motion
analysis, to accurately anticipate the motion of surrounding
individuals [9]–[13]. In addition, the robot’s perception and
decision-making processes need to be explainable to human
collaborators for enabling close human-robot collaboration.

Human motion is often modeled by tracking the movement
of the skeletal joints over time [14]–[18]. Several approaches
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Fig. 1. Qualitative Performance of different motion prediction methods for
walking on UTD-MHAD. Our method produces more feasible joint poses
by maintaining relative orientation of each joints, while achieving the best
quantitative performance.

have modeled the problem of predicting human motion as that
of forecasting future trajectories, conditioned on past observed
trajectories, in a sequence-to-sequence manner [15]–[17]. Prior
work can be broadly categorized into deterministic approaches:
learning point estimates over future trajectory [15]–[17], and
probabilistic approaches: learning a distribution over future
trajectories using latent variables [4], [18], [19]. Although the
aforementioned works have shown promising results, predicting
human motion quantitatively, in terms of some evaluation metric
such as Mean Squared Error and qualitatively (see Fig. 1),
in terms of generating feasible and realistic motion remains a
challenging task [16], [17]. This highlights the need to learn a
more robust representation of observed trajectories.

Predicting the motion of just one person is not enough for
a robot to be successful in a team. It is expected to work with
multiple people and needs to capture the inter-agent dynamics
to accurately predict the motion of all individuals. Prior work
on multi-agent forecasting has primarily used the global mo-
tion (2D positions) for modeling the interaction among all the
agents [20]–[23]. These approaches do not consider the local
pose or skeletal joints of the humans, thus only modeling coarse
information about human trajectory. To incorporate skeletal
pose, recent work introduced a joint-learning framework that
models both skeleton positions and global 2D positions, for
multi-agent settings [24]. However, the approach relies on pool-
ing mechanisms (e.g., [20], [21]) to model the interaction among
multiple agents, which are prone to losing valuable information
while being invariant to small changes in input [25], [26].

To address the above challenges, we propose an encoder-
decoder approach that is scalable: predicting human motion
for single and multiple agents, and interpretable: disentangling
relevant aspects of human motion. The encoder architecture of
our approach differs from prior works [15], [16], [21], [27] by
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explicitly considering velocity, and acceleration features in addi-
tion to skeletal positions, to obtain a more salient representation
over past motion. These features are fed to an attention mecha-
nism [28], which learns to adaptively weigh the different motion
features and is more robust at capturing relevant information,
compared to pooling mechanisms. The output from the attention
mechanism is used to obtain the latent representation, which
comprises of continuous and categorical random variables. The
decoder then uses these latent variables to forecast future tra-
jectories in an auto-regressive manner. We differ from previous
work by learning to condition the decoder output on a subset of
the past sequences, instead of just the last predicted frame.

In settings of more than one agent, we use separate encoders
and decoders to model the motion for each agent. To model
inter-agent dynamics our approach relies on a novel attention-
based mechanism that learns to weigh relevant features from
each agent to produce a disentangled multi-agent representation.
This is used to compute the shared latent representation for all
agents, which models the categorical and continuous aspects of
multi-agent interaction. The output of the latent space is then
used by each agent-specific decoder to condition its prediction
between the immediate agent-specific prediction and the latent
variables that represent multi-agent interaction.

We evaluated the performance of our approach on single-
agent settings on the UTD-MHAD [29], multi-agent settings on
the NTU RGB+D 60 [30] and CMU Panoptic [31] datasets, and
human-robot collaboration scenarios on the KTH Human-Robot
Collaboration (KTH-HRC) dataset [4]. The results suggest that
our approach outperformed state-of-the-art human motion pre-
diction methods over all the evaluated horizons for single-agent
and multi-agent settings. Finally, we provide an interpretation of
the underlying generative process of human motion by explor-
ing the latent space. Our findings suggest that the categorical
latent variables learn to segment an action into separate action
primitives while the continuous latent variables learn to cluster
activities with similar spatial semantics.

II. RELATED WORK

Human motion prediction: Recent work on human motion
prediction has predominantly posed the problem as that of
sequence learning, modeled using Recurrent Neural Nets in
an encoder-decoder framework [14]–[18]. Martinez et al. [16]
showed that weight sharing between the encoder and decoder re-
sults in quicker convergence. Furthermore, they model velocity
representation at the decoder by introducing a residual connec-
tion. To explicitly encode the skeletal hierarchy, prior work has
modeled the kinematics chain at the encoder by dividing the
skeleton into 5 major clusters [14] or following the kinematic
chain starting from the end-effectors [32]. Aksan et al. [17]
proposed structured prediction at the decoder, by introducing
a Structured Prediction Layer which decomposes the model
prediction into individual skeletal joints, each predicted in a
hierarchical sequence. While most works on motion prediction
adopt a deterministic approach, recent work has approached the
problem as that of learning a probability density function of
future human poses conditioned on previous poses [4], [18],
[19], [27].

Butepage et al. [18] and Toyer et al. [19] adopted the Vari-
ational Autoencoder (VAE) framework for motion prediction,
which rely on learning a functional mapping from the data space
to the latent space at the encoder, with the decoder sampling from

this latent space to generate future human motion. Barsoum
et al. [27] proposed a modified version of Wasserstein GAN
(WGAN-GP) with the model input being a sequence of past
human poses plus a random vector z.

Multi-agent motion prediction: Multi-agent forecasting is
widely considered a challenging problem as the agents’ poli-
cies are not directly accessible. Several data-driven approaches
have been applied to forecast complex interactions in social
navigation [20], [21], [33], autonomous vehicles [22], [23],
[34] and HRI settings [35], [36]. Alahi et al. [20] introduced
social-LSTM, which uses agent-specific LSTMs to summarize
past observations of each agent. The hidden states of the neigh-
boring LSTMs are connected through a social pooling strategy
and used as the input to the LSTM cell at the next timestep.
Gupta et al. [21] proposed Social GAN, which introduced a
computationally efficient pooling mechanism comprising of a
Multi-Layer Perceptron followed by max pooling. While the
aforementioned works only consider the global motion of the
agents, in particular 2D locations, Adeli et al. [24] jointly
modeled global and local movement by incorporating skeleton
positions. Despite the promising performances of these methods,
the pooling mechanism commonly used in these approaches
runs the risk of losing valuable information while being invariant
to small changes in input [25], thereby learning a sub-optimal
representation.

Human motion interpretation: Interpreting the learned rep-
resentation of deep learning frameworks is crucial to their ac-
ceptability for any application. The problem of latent space
learning and interpretation for images has been extensively
studied and introduced several seminal approaches [37]–[40]. In
comparison, work on understanding the underlying generative
process of human motion is less explored. For human-robot
collaboration, robot perception needs to be explainable. Prior
work has modeled various aspects of human-robot collaboration
from human motion [18] to robot motion [41] and emotion [42]
using continuous latent variables, while providing an intuitive
explanation of the learned latent representation. However, these
approaches learn the latent representations over simple motion
(reaching or pouring) and cannot not capture the high level
dynamics of human motion.

Although the aforementioned works show promising results,
learning effective representations that summarize the observed
trajectory at the encoder remains an open problem. In addition,
the decoder network in most approaches condition only on the
past generated frame. This results in performance degradation
over long-term horizons and is not suited for multi-agent settings
where there is a need to consider cross-agent interaction. To this
end, prior approaches rely on pooling over encoder representa-
tions of multiple agents, which can lead to losing relevant in-
formation. Finally, prior works on human motion interpretation
focus on learning representations over simple actions and fail to
capture the high level dynamics of human motion. To address
these challenges, we propose an encoder-decoder approach for
human motion prediction, which we describe in Section IV.

III. PROBLEM FORMULATION

Our goal is to accurately predict the motion of all agents in
a given workspace. We assume that the number of agents, m is
known. In all our formulations, we use superscript to represent
agents and subscript to represent time.
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Fig. 2. Proposed framework for single-agent setting.

For simplicity, let us first assume that there is one agent a and
we have access to the agent’s trajectory, spanning time t = 1 to τ ,
with observed trajectory frames: Xa = {xa

1 , . . . , x
a
τ}. We pose

the motion prediction problem as predicting future trajectory
frames over a horizon H: Ya = {yaτ+1, . . . , y

a
τ+H}, condi-

tioned on the observed framesXa. Each framexa
t ∈ RN denotes

the N -dimensional body pose. N depends on the number of
joints in the skeleton, J and the dimension of the jointsD, where
N = J ×D.

We assume that future human pose is conditioned on the past
observed or generated poses, and predict each frame in an auto-
regressive manner as formulated below:

pθ(Y
a) =

τ+H∏
δ=τ+1

pθ(y
a
δ |yaτ :δ−1, x

a
1:τ ) (1)

where the joint distribution is parameterized by θ.
In the case of multiple agents, we assume that the future pose

for each agent is conditioned on the observed poses of all the
agents and generated pose of the specific agent. As such, we can
extend Eq. 1 for each agent a as follows:

pθ(Y
a) =

τ+H∏
δ=τ+1

pθ(y
a
δ |yaτ :δ−1, x

1:m
1:τ );∀a = 1, . . . ,m (2)

IV. HUMAN MOTION PREDICTION

Our approach has the overarching goal of accurately pre-
dicting human motion while being scalable and interpretable.
It comprises of an encoder-decoder, trained end-to-end, with
adversarial regularization on the latent variables. To address the
challenges of learning a robust representation, the encoder ex-
plicitly models position, velocity, and acceleration information.
The decoder conditions its output on both the latent representa-
tion and the immediate past frame, thus attaining performance
gain over long horizons. For multi-agent settings, our approach
uses an attention mechanism to model the inter-agent dynamics,
thus learning a more robust representation. We will first describe
our framework for single-agent motion prediction and then dis-
cuss its scalability for predicting the motion of multiple agents.

A. Single-Agent Motion Prediction

Our framework for a single-agent setting comprises of one
encoder-decoder, along with adversarial training (see Fig. 2).

Multi-stream Encoder: The encoder aims to learn a spatio-
temporal representation over the past observation for a given
agent. To obtain a rich and more robust representation over the
past trajectories, we extract the past velocity and acceleration

features along with the provided positional values, thus forming
a multi-stream input for the encoder. The velocity and accelera-
tion features are first and second-order derivative of the position
values for each skeleton joint.

As we pose this as a sequence learning problem, we employ
Recurrent Neural Networks, in particular unidirectional Gated
Recurrent Units (GRU), to extract temporal feature representa-
tions for each stream. Our choice of unidirectional GRUs over
a bi-directional architecture is motivated by our need to predict
human motion in real-time. We choose GRUs due to their com-
parative performance to LSTMs while having computational
advantages. For each stream, the stream-specific GRU aims to
encode the spatio-temporal information over the input sequence,
which is formulated as:

hs,t = GRU(hs,t−1, xs,t, φs) (3)

where s represents position, velocity, or acceleration. Here, xs,t

represents the input to the GRU at time t and will take the value
of xpos,t, xvel,t, xacc,t for position, velocity and acceleration,
respectively. hs,t−1 represents the past hidden output and φs

represents the stream-specific encoder weights for the GRU. The
output from each GRU is passed to a multi-head self-attention
module [28]. The attention module is tasked to sparsely and
adaptively extract the salient features from the three streams.

ht = Concat(hpos,t, hvel,t, hacc,t); hatt,t = Att(ht,φatt)
(4)

In the self-attention module the concatenated output, ht is at
first linearly projected to query (Q), key (K), and value (V )
embedding for each head. The embeddings are used to compute
attention weights using the scaled-dot product softmax (sf)
approach. The overall functions for each head in the multi-head
self-attention module are formulated below:

Q = htW
Q; K = htW

K ;V = htW
V

Att(Q,K, V ) = sf

(
QKT

√
dk

)
V

(5)

where, WQ,WK ,WV represent the linear projection weights
and 1√

dk
is the scaling factor for calculating the attention

weights.
Latent Variables: Our proposed approach aims to learn a

distribution over past observations similar to previous work [4],
[19], [32], but differs in terms of the latent space representation
and regularization. The core assumption underlying such ap-
proaches is that the past observations and future trajectories are
generated by some random process involving unobserved latent
variables. Unlike prior approaches, our framework models both
continuous Z and categorical random variables C as part of the
latent space.

In line with prior work on representation learning for im-
ages [38], [39], our framework augments the continuous latent
distribution with a relaxed discrete distribution, but for human
motion modeling. The motivation here is to disentangle and
model continuous aspects of human motion such as the style of
the agent, as well as discrete information such as class activity
or action primitive.

To obtain the continuous latent variable zt, the output from
the self-attention module is passed through a linear layer (Lin),
whereas in the case of the categorical latent variable ct, the output
from the self-attention module is passed through a linear layer
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Fig. 3. Adversarial training over the latent space.

followed by a softmax (sf) layer.

zt = Lin(hatt,t); hc,t = Lin(hatt,t); ct = sf(hc,t) (6)

Discriminators: In line with previous frameworks on latent
space learning and regularization, such as Variational Autoen-
coders (VAEs) [37], Joint-VAE [39] and Adversarial Autoen-
coders (AAE) [38], we enforce a prior on the latent variables.
We differ from prior work on motion generation that use KL-
divergence for enforcing a prior [19], [32], instead using adver-
sarial training, thus adopting the AAE framework for motion
generation [38]. Our choice of using adversarial training is to
avoid tuning the KL-divergence loss that is often small compared
to the reconstruction loss and requires a scaling factor β as well
as an annealing schedule.

In our framework, the encoder aims to confuse the discrimina-
tors by trying to ensure that its output is similar to the aggregated
prior. The discriminators are trained to distinguish the true
samples generated using a given prior, from the latent space
output of the encoder, thus establishing a min-max adversarial
game between the networks [38], [40].

We use two discriminators, one for the continuous latent
variable and the other for the categorical latent variable, as shown
in Fig. 3. The discriminators compute the probability that a point
zt or ct is a sample from the prior distribution that we are trying
to model (positive samples), or from the latent space (negative
sample). The discriminator loss, which is high if the generated
sample from the encoder is coming from a different distribution
compared to the prior, is used to update the parameters of the
encoder, thus enforcing it to produce samples similar to the prior.
We use a Gaussian prior for continuous latent variables and a
uniform distribution prior for categorical latent variables.

Decoder: The decoder is auto-regressive, i.e., it uses the
output of previous timesteps to predict the current pose, and has
only one stream: position. The input to the decoder is the latent
representation, summarizing the past observations as well as
the immediate hidden representation of the last predicted frame.
This is passed to a multi-head self-attention module, similar to
one at the encoder, which learns the attention weights between
the previous output and the latent variables that summarize past
frames.

The first part of the decoder is a GRU cell, that takes as input
the output of the multi-head self-attention module as well as the
output of the last timestep. This is followed by either a fully
connected layer or a Structured Prediction Layer (SPL) [17],
which aim to explicitly model the spatial structure of the joints
by hierarchically predicting each joint, instead of treating each
joint individually. The operations at the decoder are formulated
as follows:

pt = Concat(zt, ct, hdec,t−1); patt,t = Att(pt, φatt)

hdec,t = GRU(St−1, patt,t, φpos); St = γ(hdec,t)
(7)

Fig. 4. Proposed framework for multi-agent setting.

where zt and ct are the latent variables, hdec,t−1 is the previous
hidden output of the GRU. patt,t is the output of the attention
mechanism in the decoder, which is passed to the GRU along
with the previous GRU output St−1. φatt and φpos represents
the weights of the attention module and GRU cell respectively.
γ represents the output layer of the decoder with St being
the predicted motion at time t. We add a residual connection
between decoder output at the last and current timestep, which
improves short-term prediction and result in smoother output
sequence [16].

B. Multi-Agent Motion Prediction

In addition to addressing the challenges of learning a robust
representation and improving the interpretability of single-agent
motion prediction, our approach can be scaled to predict motion
for multiple agents.

Multi-stream Encoder: Each agent’s motion is modeled
by an agent-specific multi-stream encoder that learns a spatio-
temporal representation over the past trajectories. The operations
per-agent are similar to the ones in Eq. 3. Form agents, there will
be m number of encoders and decoders, matching the number
of agents (see Fig. 4).

To obtain a robust cross-agent interaction, the output of all
the encoders is passed to a multi-head self-attention module.
The operations can be summarized as:

ha
t = Concat(ha

pos,t, h
a
vel,t, h

a
acc,t)

ht = Concat(ha
t , . . . , h

m
t );hatt,t = Att(ht,φatt)

(8)

where ha
t represents the agent-specific multi-stream output from

each encoder. ht is the concatenated representation for all agents
and hatt,t is the output of the attention module, representing
the cross-agent interaction. We use the attention mechanism
to disentangle and extract relevant multi-agent features from
agent-specific representations while addressing the limitations
of (max, average) pooling, which tend to summarize and thereby
lose valuable information.

Latent variables and Discriminators: For multi-agent set-
tings, we use the formulations of Eq. 6 to obtain the latent
variables. Here, the latent variables represent the joint motion
segment and the spatial semantics of all the agents. As the
underlying functions for the discriminators and latent space
remain unchanged, our approach is robust to the number of
agents and can model interactions among all the agents.

Decoder: Each agent will have a specific decoder that auto-
regressively predicts the motion for that agent only. The inputs
to the decoder are the latent variables as well as the hidden
representation of the last frame. This is passed to a self-attention
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module that learns the attention weights between the immediate
agent-specific past output and the latent variables that represent
multi-agent interaction. This allows the decoder to better capture
inter-agent dynamics as well as condition its output on a subset
of past frames.

The representation obtained from the self-attention module is
fed to the GRU cell along with output of the last timestep. The
output from the GRU is passed to a linear layer, with Sa

t being
the predicted motion of agent a at time t. The operations at each
decoder are formulated as follows:

pat = Concat(zt, ct, h
a
dec,t−1); p

a
att,t = Att(pat , φ

a
att)

ha
dec,t = GRU(Sa

t−1, p
a
att,t, φ

a
pos); S

a
t = γ(ha

dec,t) (9)

V. EXPERIMENTAL SETUP

A. Datasets

We evaluated the performance of our approach by applying
it on three widely used human-activity and social interaction
datasets: UTD-MHAD [29], NTU RGB+D 60 [30] and CMU
Panoptic [31]. Furthermore, we evaluated our approach on the
KTH Human-Robot Collaboration (KTH-HRC) dataset [4]. For
single-agent motion prediction, we conducted experiments on
the UTD-MHAD. The dataset contains 27 action classes cover-
ing activities from hand gestures to training exercises: providing
a range of relevant and diverse activities for human-robot col-
laboration. We used skeleton data for predicting human motion,
following previous work in this domain [14]–[18], and consid-
ered each of the 20 provided joints. We used the cross-subject
evaluation scheme, training and validating on odd-numbered
subjects while testing on even-numbered subjects.

For multi-agent motion prediction, we conducted experiments
on the NTU-RGB+D 60 [30] and CMU Panoptic [31] datasets.
For NTU-RGB+D 60 dataset, we focused on the action classes
involving more than one agent, resulting in 11 joint actions in
total, ranging from punching to hugging, similar to previous
work [24]. We used the cross-subject evaluation scheme [30],
with 20 subjects for training and validation and a separate 20 for
testing. For the CMU Panoptic dataset, we focused on the Hag-
gling action, which consisted of more than two agents and had a
defined training and testing protocol. Similar to the single-agent
setup, we used the skeleton modality and all provided joints
of each agent for motion prediction across all methods. While
having access to a different modality, such as RGB data, can
potentially improve model performance, prior work has shown
that the improvement is only marginal due to the constrained
environmental setup in which the data were collected [24].

Finally, the KTH-HRC dataset [4] comprised 4 human-robot
collaboration actions ranging from handshaking to hand wave.
We used two experimental setups. First, we train our model on
Human-Robot Collaboration (HRC) data and set aside the last
20% of all the trials for testing, in keeping with [4]. Second, we
train the model on Human-Human Collaboration (HHC) data
and test on HRC data. We used the same four joint positions as
the original paper [4].

B. State-of-The-Art Methods and Baselines

For evaluating our model on single-agent settings, we
compared against two state-of-the-art approaches: Seq2Seq-
sampling [16], Seq2Seq-sampling-SPL [17], and the zero-
velocity baseline [16]. The Seq2Seq-sampling approach is based

on the sequence-to-sequence learning framework but introduces
a skip connection between the final model prediction and the past
predicted frame. In the Seq2Seq-sampling-SPL approach [17],
the authors introduce a Structural Prediction Layer at the de-
coder that results in a hierarchical prediction of joints, based on
the structural prior of human joints. In addition, we compared
against the zero-velocity baseline used in many other work for
comparison and demonstrated to be a high-performance baseline
that is hard to outperform [15], [16], [19]. The baseline assumes
that all the future predictions are identical to the last observed
pose and is difficult to outperform for short-term prediction.

Similar to single agent, we compared our multi-agent ap-
proach against two state-of-the-art methods, Joint Learning and
Joint Learning + Social [24]. In case of Joint Learning + Social,
a permutation invariant pooling mechanism is applied to pool
social features across all agents with max-pooling providing the
best results [24]. To ensure a fair comparison, we fine-tuned
hyper-parameters for all the approaches.

C. Evaluation Metric

We evaluated the performance of all models using the Mean
Squared Error (MSE), which is the l2 distance between the
ground-truth and predicted poses at each timestep, averaged
over the number of joints and sequence length, similar to prior
work [17], [18], [24], [32]. The MSE is calculated as:

L(X , X̂ ) =
1

T ×K

T∑
t=1

K∑
i=1

(xi
t − x̂i

t)
2 (10)

where, T and K are the total number of frame and joints
respectively. The MSE jointly encodes global body motion and
skeletal movements [24], making it an ideal metric.

D. Implementation Details

Our approach is divided into four modules: the encoder,
latent variables, discriminators and decoder. The training has
two phases: reconstruction and regularization, in line with the
AAE framework [38]. In the reconstruction phase, the encoder-
decoder is trained end-to-end, using reconstruction loss. In the
regularization phase, the discriminators are trained using the
cross-entropy loss. The discriminator loss is used to update the
weights of the encoder. We provide details on the training of all
experiments in the supplementary video.

Encoder: For single-agent experiments on UTD-MHAD and
HRC data, we use one multi-stream encoder to encode past
observations. The encoder comprises of three GRUs for position,
velocity, and acceleration. The hidden state dimension is 200
for velocity and acceleration. For position, the hidden state
dimension is the same as the input dimension.

For multi-agent experiments on the NTU RGB+D 60 and
CMU Panoptic datasets, we varied the number of encoders de-
pending on the number of agents. We use dropout regularization
for all GRUs with a dropout probability of 0.1.

Latent variables: We empirically evaluated the ideal combi-
nation for the continuous and categorical latent variables, while
ensuring that they are smaller than the intrinsic dimension of
the data. The dimensions for continuous and categorical latent
variables vary depending on the datasets and are provided in the
supplementary video.

Decoder: For single-agent experiments, we use one decoder
and implement weight sharing between the position-specific
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TABLE I
MSE (IN CM2) COMPARISON OF DIFFERENT SINGLE-AGENT METHODS ON UTD-MHAD AND KTH-HRC DATASETS (LOWER IS BETTER)

encoder and decoder GRU. The output of the GRU is followed
by a Structured Prediction Layer (SPL) [17].

For multi-agent experiments, we varied the decoders depend-
ing on the number of agents. We simplify the decoder operations
by using a linear layer as the final output for each decoder. In both
experiments, we use Teacher Forcing [43] to aid the learning only
during training, whereby we feed the actual output at the last
timestep to prevent prediction errors from severely propagating
into the future.

Discriminator: We use feedforward neural networks with
2 linear layers each, followed by sigmoid activation for both
discriminators. The hidden size of both layers is 200 and 100
for single and multi-agent experiments respectively.

Training environment: We used Pytorch v1.5.1 running on
Nvidia Titan v100 and Cuda 10.1 for all our experiments. The
encoder-decoder architecture is trained end-to-end using the
Adam optimizer [44]. We used an initial learning rate of 1e-3
for experiments on UTD-MHAD, KTH-HRC & CMU Panoptic
datasets and 5e-4 for experiments on the NTU RGB+D 60
dataset. For all experiments, we used weight decay on plateau
with a decay factor of 0.1 and early stopping on the validation set.
For the discriminators, we used Adam optimizer with learning
rates of 2e-6 onUTD-MHAD, KTH-HRC and CMU-Panoptic
and 2e-7 on NTU RGB+D 60.

VI. RESULTS AND DISCUSSION

A. Single Agent Motion Prediction

Results: We present the results of all models on single-agent
motion prediction on the UTD-MHAD in Table I. We report
the performance of all approaches at distinct frame intervals to
circumvent the problem of frame drops during data collection
and subsequent evaluation. Our frame intervals aim to evaluate
all models on short (2 & 4), mid (8 & 10), and long-term motion
prediction (13 & 15). The results in Table I suggest that our
approach outperforms all other methods and the zero-velocity
baseline for short, mid, and long-term prediction. Our proposed
model performs particularly well for long-term prediction with
the performance of all models deteriorating as the prediction
horizon increases.

Discussion: Our proposed approach outperformed state-of-
the-art models on all evaluated benchmarks, suggesting im-
proved representation learning and sequence modeling. The
results from Table I suggest that all models outperform the
zero-velocity baseline [16]. For long-term motion prediction (13
& 15 frames), our method outperforms other approaches, firstly
demonstrating the robust learning capability of the multistream
encoder. Furthermore, the latent variables learn a distribution
over the observed trajectory, which is used to predict future
frames. As such, they learn long-term representation over a hori-
zon. As the decoder conditions its output on the last predicted
frame and the latent variables, it achieves performance gains
over the long-term. Fig. 1 underscores the fact that our approach

generates more feasible motion compared to other methods by
accurately modeling joint position and orientation.

B. Multi-Agent Motion Prediction

Results: We present the results of all models on multi-agent
motion prediction on the NTU RGB+D 60 and CMU Panop-
tic datasets in Table II. Similar to the single-agent setup, we
measured all models’ quantitative performance at the same
distinct frame intervals (2, 4, 8, 10, 13 & 15). The results in
Table II suggest that our approach outperforms all models over
all evaluated horizons, with particularly improved performance
over longer horizons.

Discussion: Our proposed approach outperformed other
methods over all the evaluated horizons. This suggests that our
approach learns a more robust representation for each agent,
while also capturing relevant inter-agent dynamics among all
the agents. The multi-stream encoder provides a salient repre-
sentation for each agent, which is then used by the self-attention
mechanism to adaptively weigh relevant agent-specific features
for modeling the interaction dynamics among all the agents.
In addition, the decoder module learns the attention weights
between the immediate agent-specific past output and the latent
variables representing the observed multi-agent interaction. This
further contributes to the performance gain, especially over
longer horizons, as the decoder conditions over a subset of past
frames and interaction among all the agents.

C. Human-Robot Collaboration Experiments

Results: We present the results of all models on the human-
robot collaboration experiments in Table I. We first trained and
evaluated all models on HRC data. Next, we trained all models on
HHC data and evaluated them on HRC data. Here, we measured
the MSE over larger frame intervals due to the tasks’ duration
being longer (approx. 11 seconds). We evaluated all models on
short (5 & 10), mid (20 & 30) and long-term horizons (35 & 40).

Discussion: The results in Table I (KTH-HRC (Trained and
tested on HRC data)) suggest that our proposed method outper-
formed all other approaches over all the horizons. Similar to the
single and multi-agent conditions, our approach’s performance
gains increase over longer horizons.

When training on HHC data and testing on HRC data, the
results in Table I suggest a similar pattern, with our proposed
approach outperforming other methods. We also observed that
the models generalize better when training on HHC data and
testing on HRC data. We attribute this to there being greater
and more diverse training samples, which allowed the models
to learn a more robust representation.

The above results demonstrate our model’s ability to best
predict human motion, even in the presence of a collaborative
robot. Having superior short-term performance would allow the
robot to prevent collisions and be more responsive, thus en-
hancing collaboration safety. On the other hand, having superior
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TABLE II
MSE (IN CM2) COMPARISON OF DIFFERENT MULTI-AGENT METHODS ON NTU RGB+D 60 AND CMU PANOPTIC DATASETS (LOWER IS BETTER)

Fig. 5. Continuous latent space visualization using t-SNE plots on UTD-
MHAD (Left) and NTU RGB+D 60 (Right) datasets.

Fig. 6. Action primitives for wave on UTD-MHAD.

long-term performance would allow the robot to plan its actions
more efficiently.

D. Latent Space Interpretation

Results: We visualized the learned latent space of our frame-
work to improve our understanding of the generative process. For
this purpose, we analyzed the learned latent manifold for single
and multi-agent settings on the UTD-MHAD and NTU RGB+D
60 respectively. For each temporal window of observations,
our proposed framework maps the high-dimensional data into a
low-dimensional manifold, represented by the continuous and
categorical latent variables.

To visualize the continuous latent variables, we project them
to a 2-D plane using t-SNE [45] as shown in Fig. 5. We then
segment the 2-D plane by action class labels, which were not
provided during training. For analyzing the categorical latent
variables, we look at their distribution over a trajectory for each
action. Fig. 6 presents the predicted frames for the action wave
on UTD-MHAD, along with the distribution of the categorical
latent variable over the duration of the action.

Discussion: Our results suggest that the continuous latent
variables learn spatial embedding for each temporal window.
Fig. 5 shows that activities that share similar spatial semantics,
such as walking and jogging on UTD-MHAD (Fig. 5-Left)
and walking towards and walking away on NTU RGB+D 60
(Fig. 5-Right) have overlapping clusters. Similarly, other sets of
activities such as bowling and lunging, and wave and swipe left
on UTD-MHAD also have separate overlapping clusters. Addi-
tionally, as seen in Fig. 5-Left for UTD-MHAD, our framework
learns to separate activities that have different spatial semantics:
the clusters for bowling and lunging, walking and jogging, and
wave and swipe left, do not overlap. Similar segmentation is
observed for multi-agent activities such as handshaking and
walking towards/apart on NTU RGB+D 60 (Fig. 5-Right).

TABLE III
ABLATION STUDY OF OUR METHOD ON UTD-MHAD. HERE, SPL: USING

STRUCTURED PREDICTION LAYER, TF: TEACHER FORCING

In case of categorical latent variable, our results on UTD-
MHAD indicate that it takes on different values over time,
which coincides with different action primitives. As can be seen
in Fig. 6, the action class wave is segmented into four action
primitives: moving the hand up, waving left, waving right and
finally moving the hand down.

The above results demonstrate how our framework interprets
each temporal window, modeling the continuous and categorical
aspects of human motion. The learned representation of our
framework can be used for various facets of robot perception,
from activity segmentation and recognition to learning from
demonstration. Crucially, it can be viewed as a step towards
closer human-robot collaboration, by providing an explainable
robot perception.

E. Ablation Study of Learning Modules

Results: We conducted an ablation study on the UTD-MHAD
to evaluate the importance of various learning modules in our
approach. Table III shows the impact of specific learning prac-
tices, given the same backbone framework of the multi-stream
encoder and decoder.

Discussion: For a baseline, we have no SPL at the decoder,
replacing it with a linear layer, while also not using Teacher
Forcing (TF) during training. This architecture provided the
worst performance in terms of MSE loss. Adding TF with
a probability of 0.5 resulted in a large improvement in the
short-term prediction, with marginal gains over the long-term.
This highlights the importance of TF especially for short-term
prediction while also suggesting that the benefit decreases with
an increase in time. We next assess the impact of having the
SPL, firstly with no TF. Consistent with previous results, the
short-term performance of the model is worse when compared
with No-SPL + TF; however it is better across all evaluated
horizon when compared against No-SPL + No-TF. This suggests
the benefit of hierarchically predicting each joint when using
SPL as the final layer instead of using a linear layer that assumes
all joints are independent. Our best performing model is the SPL
+ TF, which combines the benefit of using structured prediction
as well as having the short-term improvement of TF.

VII. CONCLUSION

In this work, we introduced a novel sequence-learning ap-
proach for human motion prediction that outperformed state-
of-the-art methods on single and multi-agent settings. Our
framework for multi-agent motion prediction introduces an
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attention-based mechanism that can better represent the inter-
agent dynamics of human motion. Furthermore, our framework
conditions its output on a subset of past frames instead of just the
last frame, thus attaining performance gains over the long-term.
Finally, our approach can provide an intuitive explanation of the
learned latent space. Our results suggest that the latent space can
model human motion into spatial and temporal segments. The
overall performance of our approach along with its interpretable
latent space suggests that our approach can effectively capture
the underlying dynamics of human motion. This opens the
possibility of its adoption for robot perception in human-robot
collaboration.
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